6,240 research outputs found

    Propagation of temporal entanglement

    Get PDF
    The equations that govern the temporal evolution of two photons in the Schr{\"o}dinger picture are derived, taking into account the effects of loss, group-velocity dispersion, temporal phase modulation, linear coupling among different optical modes, and four-wave mixing. Inspired by the formalism, we propose the concept of quantum temporal imaging, which uses dispersive elements and temporal phase modulators to manipulate the temporal correlation of two entangled photons. We also present the exact solution of a two-photon vector soliton, in order to demonstrate the ease of use and intuitiveness of the proposed formulation.Comment: 8 pages, 4 figure

    Constraints on the density dependence of the symmetry energy

    Full text link
    Collisions involving 112Sn and 124Sn nuclei have been simulated with the improved Quantum Molecular Dynamics transport model. The results of the calculations reproduce isospin diffusion data from two different observables and the ratios of neutron and proton spectra. By comparing these data to calculations performed over a range of symmetry energies at saturation density and different representations of the density dependence of the symmetry energy, constraints on the density dependence of the symmetry energy at sub-normal density are obtained. Results from present work are compared to constraints put forward in other recent analysis.Comment: 8 pages, 4 figures,accepted for publication in Phy. Rev. Let

    Nuclear isotope thermometry

    Get PDF
    We discuss different aspects which could influence temperatures deduced from experimental isotopic yields in the multifragmentation process. It is shown that fluctuations due to the finite size of the system and distortions due to the decay of hot primary fragments conspire to blur the temperature determination in multifragmentation reactions. These facts suggest that caloric curves obtained through isotope thermometers, which were taken as evidence for a first-order phase transition in nuclear matter, should be investigated very carefully.Comment: 9 pages, 7 figure

    YASIR: A Low-Latency, High-Integrity Security Retrofit for Legacy SCADA Systems (Extended Version)

    Get PDF
    We construct a bump-in-the-wire (BITW) solution that retrofits security into time-critical communications over bandwidth-limited serial links between devices in legacy Supervisory Control And Data Acquisition (SCADA) systems, on which the proper operations of critical infrastructures such as the electric power grid rely. Previous BITW solutions do not provide the necessary security within timing constraints; the previous solution that does is not BITW. At a hardware cost comparable to existing solutions, our BITW solution provides sufficient security, and yet incurs minimal end-to-end communication latency

    YASIR: A Low-Latency, High-Integrity Security Retrofit for Legacy SCADA Systems

    Get PDF
    We construct a bump-in-the-wire (BITW) solution that retrofits security into time-critical communications over bandwidth-limited serial links between devices in Supervisory Control And Data Acquisition (SCADA) systems. Previous BITW solutions fail to provide the necessary security within timing constraints; the previous solution that does provide the necessary security is not BITW. At a comparable hardware cost, our BITW solution provides sufficient security, and yet incurs minimal end-to-end communication latency. A microcontroller prototype of our solution is under development

    PPAA: Peer-to-Peer Anonymous Authentication (Extended Version)

    Get PDF
    In the pursuit of authentication schemes that balance user privacy and accountability, numerous anonymous credential systems have been constructed. However, existing systems assume a client-server architecture in which only the clients, but not the servers, care about their privacy. In peer-to-peer (P2P) systems where both clients and servers are peer users with privacy concerns, no existing system correctly strikes that balance between privacy and accountability. In this paper, we provide this missing piece: a credential system in which peers are {\em pseudonymous} to one another (that is, two who interact more than once can recognize each other via pseudonyms) but are otherwise anonymous and unlinkable across different peers. Such a credential system finds applications in, e.g., Vehicular Ad-hoc Networks (VANets) and P2P networks. We formalize the security requirements of our proposed credential system, provide a construction for it, and prove the security of our construction. Our solution is efficient: its complexities are independent of the number of users in the system
    • …
    corecore